lunedì 9 settembre 2019, ore 11.00

e altre date

Global-local properties of characters of finite groups

prof.ssa Britta Späth

Aula 7,
Palazzo Toppo Wassermann, Via Gemona, 92, Udine

  • lunedì 9 settembre 2019, ore 11.00
  • martedì 10 settembre 2019, ore 11.00

In the last decade a couple of so-called global-local conjecture in the representation theory of finite groups have been reduced to strong versions of them on simple groups. An example is the McKay conjectures that claims that for any finite group G and any prime p the number of irreducible ordinary characters with p'-degree only depends on the normalizer of the Sylow p-subgroup of G in G. This conjecture has inspired others similar conjectures on the number of Brauer characters and also Dade's conjecture summarizing all of them. As in group theory the key to those inductive proofs behind the reduction theorems is a deeper understanding of the interplay between the representations of a finite groups and the representations of subgroups and quotients. The lectures will focus on the reduction theorem of the McKay conjecture and give also an idea how the McKay conjecture was verified for the prime 2.



La professoressa Späth è esperta in teoria delle rappresentazioni e in gruppi algebrici. Insieme al prof. Gunter Malle hanno recentemente risolto un’importante congettura,  formulata da  McKay quasi 50 anni fa, che lega numero dei caratteri di grado dispari di un gruppo finito con quello del normalizzante di un suo 2-sottogruppo di Sylow.